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ON SETS OF HYPERREAL NUMBERS
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ABSTRACT

We construct a field *R of hyperreal numbers so that the field B of real numbers is embedded
as a subfield of *R. The set *R can be regarded as a metric space containing the set K as a discrste
subset and we can generalize this property.
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1. Introduection and preliminaries. In the 1960s, Abraham Robinson showed that
the set B of real numbers can be regarded as a subject of a set *R of hyperreal numbers
which contains infinitely small and large numbers. We can contend the set *R is a metric
space containing the set R as a discrete subset. In the present paper we would like to
generalize this property.

We shall first state some fundamental properties on filters. According to Comfort and
negrepontis [1], we shall give the following definition.

Definition 1.1. Let I, be an infinite set and 7, be a filter on I for each i = 1,2,3. We
define sets 7, %,, (- %) - F, %% %, and 7, - (F, - 7) as follows.

Foh= e PUX) |y el [,e L, | Gpy)edle Ble 5]

(7, £)- F=1Ae PUXI,xI) | {y,y)e I xI, | e L
py¥)€Ale Ble - 51,

F- % F=AePU xLxI)| el |yecl,|ly,el,|
Cuysy)eAle BLle Fle 71

R R =Ae PU XL XL |y, el | (y,y)e %L, |
(ylay2:y3)e A}l e .ﬂrz ?-3}@ ,(Irl}

We immediately have the following proposition.
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Proposition 1.2,

(1.1) ¥, - Fisafilteronl x I,
(1.2) (5 -%y=F ; {0 Fand ¥, - (9, %) arefilters on I, x I, x I, and we have

(58 H=FF H=F G B
The following proposition was given in [3].

Proposition 1.3. Let 7, and 7, be ultrafilters on /, and I, respectively. Then 7 - % is
an ultrafilter on I, x I,

Proposition 1.4. Let 7,and 7, be ultrafilters on I, and I, respectively, and let #, or 7,
be a free (w — incomplete) ultrafilter, then 7, - 7 is a free ultrafilter on I, x I
In order to prove Proposition 1.4, we use a lemma.

Lemma 1.5. Let %, and 7, be filters on I, and I, respectively. Then
(1.8) " letX, e £ and X, e 7, thenX, x X, e ¥ - %,
and
(1.4) letX cl andX,cl,andlet X, ¢ % or X, ¢ %, then X x X, ¢ 7 - 7.
Proof of Proposition 1.4. Let 7, be a free ultrafilter, then there exists A such that 4 e

#, for each n € N and nh: ,A, e 7, where N is the set of all positive integers.
Using Lemma 1.5, we have A x I, e 7, . 7, for eachn € N,

Since N B .
NA xI)=(nA)xI,and A ¢ %,
n=1i =1 n=1
we have .
(,Q]An) xI ¢ F %
Therefore 7, - 7, is a free ultrafilter. Q.E.D.

Let K be a nonempty set and

a (yp siey yn) 3 b ('yl, ey yn) [ n K .
&, mye I x..x1

n

We define a relation R (n), by

aQ (yl, ---,yn) Rn)b ()’1, sy yn)l

if and only if
{5 s € L 3 o BT 30 Wy oo W) =Ty vy B0

The relation R(n) is an equivalence relation.
We would like to use a notation

m KIF.%.F

Gy de iz x
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in order to express the guotient space

I K [ R(n)

O eny)e I,
The quotient class determined by a function a (y,, ..., y) will be denoted by [a (v, ..., ¥ )I.
Theorem 1.6. The following formula 1s valid.

(I K/5)/7= Il K/lyg-4,

yel yel pyde L xI,

Proof. If

@Nlype O (IO K),

»el wel

then we can contend

- @, (v,) e n K,

bpy)e I =1,

and we write
@ o)) ) =a (v, y,)
We immediately have this result by the following fact, Let
la G G, B @) o) e T (11 K/5)/ 7,
wel yel
then we have
[f& (w1 ) = b &,)] ()]
o e l; ey ) =6 @) o)) e 7
& bel;ly,el; @) o) =00) b e Fle 7,

o Wy)eLxlial,y)=bl,y)e 5.9  QED.

Corollary 1.7, The following formula is valid.

n n .(moK/5)..3 )%= I1 K% v Es

yel wel, v, €1, Op ey Ixex I

2. On sets of hyperreal numbers
Now we shall give the following definition.

Definition 2.1. Let R*={y e R | y > 0} and let F = {{0, ¥) | ¥y € R*}. Then F has the

finite intersection property. We shall denote by 7 one of the ultrafilters containing F. The
filter 7is a free ultrafilter.
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We shall use the foliowing notations:
Fl=Fand - ¢ = 7% forn € N,

(R = R* and R*x (R*)* = (R*y"* for n € N,

"R=R,"R="R= 11 R/¥ and

¥ e R

PR = I R/F .5 for n € N.

(¥, .y e (B

We immediately have the following theorem.

Theorem 2.2. "R = (""" R) for n € N.

An element of the set *'R is called a hyperreal number. The set *’R is made into a com-
mutative ordered field by defining the addition, the subtraction, the product, the quotient
and the order in the usual way.

We define absolute value in ™R as follows.

Definition 2.3. If x = [x (y,, ..., ¥y )] € "R, then | x | = [{x (y,, ..., ¥ )]
We have the following theorem immediately.

Theorem 2.4. “'R is a metric space with a usual metric
dx,y)=|y-x| forx, ye "R.

Definition 2.5 (Infinitesimal). We shall say that e = [e (y,, ..., ¥ ] € "R is infinitesimal
or infinitesimal small if for every 8 € R*we have

{v,, ...y ) € (BY)] |ely,, s v, )I<B e F° (2.1)
When ¢ and 8 satisfy condition (2.1), we write | £ | < d.
Proposition 2.6. Let 8 ¢ B* and ¢ = [¢ (y,, .., ¥ )] € "R, then we have
165 s yn) e (B |y, ...,yn)|<6} e Fn
& by e B[ Wy ny) € B | ey, ny) <l e F

< {y,e R {y,e B*| {(y,, .., 9,) € (RY% | €lyy vy )l <Ble 77 e He ¥l

o e B ly,c R .. by, e B*] |y, ) | <Dl e Fle Fle F

oy, y) e B Wy, w0y)e B e, y)| <de e F?
&
& Moy ey ) € B 1y, € Rl lely, ..y}l <de Fle Fv.

The proof is easy, and we omit it.
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Proposition 2.7. Let £ = [e (¥ )] € 'R and & ¢ R* which satisfy a condition
y,eR* | 1ely) | <ble 7

Then we have {y vy )e R | |ely) | <8l e 7

Proof. Let A={y e R*| |e(y) | <8} ,thende 7
Since | ly, .,y )e BY)] |ely)] <8 = (R)'xA,

(RYyte g and Ae 7

we have {yp ny) e (B |ely )t < of-€ gul . F=pn, Q.E.D,

Let e, x, e ¢ ™R and £ > 0. We define a set Ufa, ¢) by

Ha,e)=xe ™ R| |2~ a | <&}

Proposition 2.8, Leta=[a {y,, .,y Mo =[xy, ...,y )1 €*" Randlete = |& (v )| be
a positive infinitesimal, then

Ula, e) = {u).
Proof. Let a + x, and let

B=A{ly, .wy,0e BV |z, ..y,0-aly, ..y ) >0
then we have B ¢ Fn+l,

Since
Wy, e B by, e B |2y, o0, ) -2, w0y, )t >e ) e 71D B,

we have
by ny)e @Y | e, 0y )o@, .0y, )| >ely ) e 5, which shows |x—- a| >«

Clearly we have U (q, €} 3> . Hence we have
Uda, &) = {a}. Q.E.D.
Using Proposition 2.8 we have the following theorem.

Theorem 2.9. A metric space " R is a discrete subspace of a metric space “'R, for
every n € N,
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